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Abstract
We explore some aspects of PT -symmetric Hamiltonians with two point
interactions. We determine classes of point interactions for which the
Hamiltonians are supersymmetric. We prove that these Hamiltonians are quasi-
Hermitian and find a very simple formula for the metric operator � and its
square root � as well. Further, we present the quasi-Hermitian Hamiltonian
(with one-point interaction) with a continuous spectrum.

PACS numbers: 03.65.Ca, 03.65.Db, 03.65.Ge, 11.30.Pb

1. Introduction

Although quasi-Hermitian operators [1] are non-Hermitian they possess a real spectrum. PT -
symmetric Hamiltonians are not automatically quasi-Hermitian, however they often serve as
a suitable starting point. In order to obtain not too technically complicated systems, we
may consider PT -symmetric point interactions instead of usual complex potentials. The
classification of PT -symmetric point interactions is provided by [2]. Particular examples
of quasi-Hermitian models with one-point interaction may be found in [3] or [4]. The
former presents the model with a closed form of metric operator �, while the latter offers an
approximate formula.

The quasi-Hermitian operator may be mapped by similarity transformation � = √
� to

the self-adjoint one [5]. However, an explicit calculation of
√

� may be very difficult even
for a not very complicated metric operator. Recent discussion of the scattering theory [6] for
non-Hermitian Hamiltonians is partly based on this similarity transformation as well. Thus
an explicit example of � may be very useful.

We present several Hamiltonians with PT -symmetric point interactions which turn out
to be quasi-Hermitian. We construct the metric operator � as well as its square root � and we
find a closed-form formula for both operators.
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The first two models are Hamiltonians with two PT -symmetric point interactions which
are compatible with supersymmetric structure. The problem of finding suitable boundary
conditions allowing supersymmetry has already been solved for the self-adjoint case in [7].
We explore a generalization to the PT -symmetric systems.

A special type of boundary conditions found for supersymmetric models inspire us to
consider the quasi-Hermitian Hamiltonian with continuous spectrum. Although the point
spectrum of the Hamiltonian is empty, we found the metric operator and its square root.

We recall the definition of the quasi-Hermitian operator.

Definition 1. Densely defined operator A acting on a Hilbert space H is called quasi-
Hermitian, if there exists an operator � with properties

(1) � ∈ B(H),
(2) � > 0,
(3) A∗ = �A�−1.

It follows from the more mathematically oriented analysis on quasi-Hermiticity [8] that all
requirements on metric operator are essential and is needed to verify them carefully, especially
the domains of definition.

2. Supersymmetric models with point interactions

We consider a system on the finite interval (−l, l) and two point interactions, at x = 0 and
x = ±l (i.e. interaction at the origin and between the two end points). Every PT -symmetric
point interaction at x = a may be described by boundary conditions ([2], theorem 2, connected
case). In order to show connection with the self-adjoint case [7] we rewrite these conditions
in the following form, using the same parameters b � 0, c � −1/b, θ, φ ∈ [0, 2π) as in [2]:

(C − I )�(a) + (C + I )� ′(a) = 0, (1)

where

�(a) =
(

ψ(a+)

ψ(a−)

)
, � ′(a) =

(
ψ ′(a+)

−ψ ′(a−)

)
, (2)

C =

⎛
⎜⎝

(b−c) eiφ+
√

1+bc(e2iφ−1)

(b+c) eiφ+
√

1+bc(e2iφ+1)

2e(θ+φ)

(b+c) eiφ+
√

1+bc(e2iφ+1)

2e(−θ+φ)

(b+c) eiφ+
√

1+bc(e2iφ+1)

(b−c) eiφ−√
1+bc(e2iφ−1)

(b+c) eiφ+
√

1+bc(e2iφ+1)

⎞
⎟⎠ , (3)

and the symbols a± have the usual meaning of limits ψ(a±) = limx→a± ψ(x).

Our aim is to find PT -symmetric systems on a loop (−l, l) with two point interactions
(at 0 and l) which are supersymmetric. Regarding usual simplicity (exact solvability in terms
of elementary functions) of Hamiltonians with point interactions and moreover its special
structure (SUSY), we intend to find explicitly the spectra and metric � operators for these
systems.

In order to obtain supersymmetric system with supercharges Q1,2 ∝ d
dx

,

{Qa,Qb} = Hδab, (4)

we have to restrict boundary conditions (1)–(3). We expect that we receive boundary conditions
which connect values of functions and values of derivatives separately as well as in a self-
adjoint case [7].

We recall briefly the procedure of finding suitable boundary conditions compatible with
supersymmetry presented in [7] and we modify it to the PT -symmetric case.
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If ϕ is an eigenfunction of H, then Qϕ is also the eigenfunction of H corresponding to
the same eigenvalue (or Qϕ = 0). Since it is not guaranteed for general boundary conditions
that Qϕ satisfies (1) although ϕ does, supercharges cannot be only derivatives multiplied by a
scalar. We take an eigenfunction ϕ of H

Hϕ = Eϕ (5)

and denote χ ≡ Qϕ. Since the supercharge is proportional to the derivative, boundary values
of χ are related to those of ϕ′:

�χ(a) ≡
(

χ(a+)

χ(a−)

)
= M

(
ϕ′(a+)

−ϕ′(a−)

)
, (6)

where M is an invertible matrix. ϕ is an eigenfunction of H, hence ϕ′′ is proportional to ϕ and

� ′
χ (a) ≡

(
χ ′(a+)

−χ ′(a−)

)
= EM̃

(
ϕ(a+)

ϕ(a−)

)
, (7)

where M̃ is an invertible matrix again. When we combine (1), (6) and (7), we arrive at

(C − I )M̃−1� ′
χ (a) + E(C + I )M−1�χ(a) = 0. (8)

Boundary conditions have to be energy independent and �χ,� ′
χ are not zero vectors

simultaneously. Therefore, (C ± I ) must be singular matrices, i.e. eigenvalues of C are
±1. This constraint restricts the general form of C to two possibilities:

C± = ±
⎛
⎝i tan φ eiθ

cos φ

e−iθ

cos φ
−i tan φ

⎞
⎠ , (9)

i.e. parameters b, c are equal to zero, however, the range of θ, φ is preserved.
After reparametrization of C± elements using new both �β and �b parameters

β1 = b1 = − cos θ

cos φ
, β2 = b2 = sin θ

cos φ
, β3 = ib3 = −i tan φ, (10)

(�β)2 = b2
1 + b2

2 − b2
3 = 1, β1,2 ∈ R, β3 ∈ iR, b1,2,3 ∈ R, (11)

we arrive at

C± = exp
(

i
π

2
(I ± �β · �σ)

)
(12)

where �σ are the Pauli matrices.
We use parameters �β in order to write following expressions in a more elegant way and

to show connection with the self-adjoint case, where parameters real �α are used [7]. However,
we move to the real parameters �b in the following sections to avoid the tricky structure of
�β, β3 is not real.

We summarize results of [7] in the following (all technical details and derivations of
formulae can be found there) and adapt the results to the PT -symmetric case. Fortunately, the
transition from the self-adjoint case turned out to be very easy, in fact a shift �α 	→ �β is needed
only. A direct connection can be found in relation (12) because it is a slight generalization
of the standard one (16). Boundary conditions for the self-adjoint case are described by the
unitary matrix U and the real parameter L0 in equation

(U − I )�(a) + iL0(U + I )� ′(a) = 0, (13)

where �, � ′ were defined in (2). We may use an exponential form of unitary matrix

U ≡ Ug(θ+, θ−) = exp
{
iθ+P

+
g + iθ−P −

g

}
, (14)

3
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where P ±
g are orthogonal projectors:

P ±
g = 1

2 (I ± g), g = �α · �σ , �α ∈ R
3, (�α)2 = 1,(

P ±
g

)2 = P ±
g = (

P ±
g

)∗
, P ±

g P ∓
g = 0, P +

g + P −
g = I.

(15)

Supersymmetry restricts (proof in [7]) these general conditions to

Ug(π, 0) = exp
{

i
π

2
(I ± �α · �σ)

}
(16)

Although we cannot use the exponential form for the general matrix C (3), both matrices
Ug(π, 0) and C± with restricted parameters may be written in the exponential form (12), (16).
We note that the only difference between Ug(π, 0) and C± is the structure of �α and �β. This
fact allows us to obtain the supercharges, eigenvalues and eigenfunctions of Hamiltonian very
easily from the self-adjoint case.

In order to express boundary conditions in a more convenient way, we use operators
P,Q,R which have been already introduced in [7],

(Pψ)(x) = ψ(−x), (Rψ)(x) = (ϑ(x) − ϑ(−x))ψ(x), Q = −iRP, (17)

where ϑ is a Heaviside step function. The operators are labeled in the following way:

P1 ≡ P, P2 ≡ Q, P3 ≡ R. (18)

The set of these operators forms an algebra of Pauli matrices, i.e.

[Pl ,Pm] = 2iεlmnPn, {Pl ,Pm} = 2δlmI. (19)

Next, the operator G associated with g = �β · �σ is introduced,

G = �β · �P, (20)

obeying G2 = I,G∗ �= G, [G,PT ] = 0. (In the self-adjoint case, �β is replaced by �α and G is
self-adjoint [7].) It allows us to decompose any function ψ into two eigenfunctions of G:

ψ± = 1
2 (I ± G)ψ, ψ = ψ+ + ψ−, Gψ± = ±ψ±. (21)

Boundary conditions at x = a corresponding to C± are now expressed in the form

type + : ψ+(a+) = ψ ′
−(a−) = 0, type − : ψ ′

+(a+) = ψ−(a−) = 0. (22)

Hence we study two types of models: (++) and (+−). (++) denotes the interaction of the type +
at x = 0 and of the type − at x = l (at x = l boundary conditions connect x = −l and x = l).
The other combinations provide equivalent models.

2.1. Model of the type (++)

We work in the Hilbert space L2(−l, l). The domain of definition of our Hamiltonian H1 ≡
H++ = − d2

dx2 consists of functions ψ ∈ AC2(�) which obey boundary conditions (++) at
x = 0 and x = ±l. We adopted notation of [13], i.e. ψ ∈ AC2(�) if ψ,ψ ′ are absolutely
continuous at � and ψ ′′ ∈ L2(−l, l). For our system, � = (−l, 0) ∪ (0, l).

Dom(H1) : ψ ∈ AC2(�),

(b1 + ib2)ψ(0+) + (1 − ib3)ψ(0−) = 0,

(b1 + ib2)ψ
′(0+) + (1 + ib3)ψ

′(0−) = 0,
(23)

(b1 + ib2)ψ(l) + (1 − ib3)ψ(−l) = 0,

(b1 + ib2)ψ
′(l) + (1 + ib3)ψ

′(−l) = 0,

b1,2,3 ∈ R, b2
1 + b2

2 − b2
3 = 1,
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−π

0
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x

Im

Re

Figure 1. Eigenfunction ψ5+, �b = (10.000, 5.600, 11.417), l = π .

where b1,2,3 ∈ R and b2
1 + b2

2 − b2
3 = 1. Since the fractions (1 ± ib3)/(b1 + ib2) have absolute

values equal to 1, boundary conditions may be rewritten as (similarly for x = ±l)

ψ(0+) = eiτ1ψ(0−), ψ ′(0+) = eiτ2ψ ′(0−), τ1,2 ∈ R. (24)

Parameters τ1,2 are different if b3 �= 0, the case b3 = 0 corresponds to the self-adjoint setting.
It is not difficult to find the adjoint operator H ∗

1 directly from the definition of adjoint
operator [13], i.e. using standard technique, integration by parts, etc.

Dom(H ∗
1 ) : ψ ∈ AC2(�),

(b1 + ib2)ψ(0+) + (1 + ib3)ψ(0−) = 0,

(b1 + ib2)ψ
′(0+) + (1 − ib3)ψ

′(0−) = 0,
(25)

(b1 + ib2)ψ(l) + (1 + ib3)ψ(−l) = 0,

(b1 + ib2)ψ
′(l) + (1 − ib3)ψ

′(−l) = 0,

b1,2,3 ∈ R, b2
1 + b2

2 − b2
3 = 1.

Since H1 is equal to H ∗
−b3

(we change the sign of b3 in (23) and take the adjoint) it is closed.
We remark that H1 is P-pseudo-Hermitian only for b2 = 0.

Eigenvalues of H1 are the same as in the self-adjoint case [7], eigenfunctions differ only
in the substitution �α 	→ �b, i.e.

En =
(nπ

l

)2
,

ψn+(x) = Cn

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 + ib3

)
sin

nπ

l
x, (26)

ψn−(x) = Cn

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 − ib3

)
cos

nπ

l
x, n ∈ N0,

where ϑ(x) is a Heaviside step function and Cn are normalization constants. Eigenfunctions
of the Hamiltonian ψn± are eigenfunctions of operator G (20) as well, corresponding
to the eigenvalues ±1 (the generalization of the proof from the self-adjoint case [7] is
straightforward). Figures 1 and 2 illustrate eigenfunctions ψs±, point interactions at the
origin and end points rotate wavefunction in the complex plane.

Energy levels are doubly degenerate except the lowest one as we expected for the
supersymmetric system. Supercharges Q1,2 may be obtained from the self-adjoint case [7]

5
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0
x Im

Re−π

π

0
x

Figure 2. Eigenfunction ψ5−, �b = (10.000, 5.600, 11.417), l = π .

easily again, by substitution �α 	→ �β

Q1,2 = i

√
2

2
G1,2P3

d

dx
, (27)

where

G1,2 = �γ1,2 · �P, (�γ1,2)
2 = 1 and �γ1,2 · �β = �γ1 · �γ2 = 0. (28)

Eigenfunctions of Hamiltonian have a very simple form and this fact allows us to construct
the metric � operator using the idea of Mostafazadeh [9, 10]

� =
∑

n

cn〈φn, ·〉φn, (29)

where cn are positive numbers and φn are eigenfunctions of H ∗
1 . An alternative approach of

Krejčiřı́k [11] using spectral theorem can be applied as well. We denote φn± eigenfunctions
of H ∗ and normalize them in a special way:

φn+(x) =
√

2

l

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 − ib3

)
sin

nπ

l
x,

φ0−(x) = 1√
l

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 + ib3

)
, (30)

φn−(x) =
√

2

l

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 + ib3

)
cos

nπ

l
x.

Sets
{
e±
n

}∞
n=1,

{
f ±

n

}∞
n=0,

e±
n (x) =

√
2

l
ϑ(±x) sin

nπ

l
x, (31)

f ±
0 (x) =

√
1

l
ϑ(±x), f ±

n (x) =
√

2

l
ϑ(±x) cos

nπ

l
x, (32)

form orthonormal bases of L2(−l, 0) and L2(0, l). We express φn± in terms of e±
n , f ±

n and
calculate

〈φn+, ψ〉φn+ = 〈
e+
n, ψ

〉
e+
n + 〈e−

n , ψ〉e−
n +

b1 + ib2

1 − ib3
〈e−

n ,Pψ〉e−
n +

b1 − ib2

1 + ib3

〈
e+
n,Pψ

〉
e+
n,

〈φn−, ψ〉φn− = 〈
e+
f , ψ

〉
f +

n + 〈f −
n , ψ〉f −

n − b1 + ib2

1 + ib3
〈f −

n ,Pψ〉f −
n − b1 − ib2

1 − ib3

〈
f +

n ,Pψ
〉
f +

n .

(33)

6
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In order to find a metric �, we calculate the sum (29)

� = s– lim
N→∞

1

2

(
N∑

n=1

〈φn+, ·〉φn+ +
N∑

n=0

〈φn−, ·〉φn−

)

= I − ib3

b1 + ib2
P +P +

ib3

b1 − ib2
P −P, (34)

where P is a parity and P ± are orthogonal projectors

(P ±ψ)(x) = ϑ(±x)ψ(x), (P ±)2 = P ± = (P ±)∗, P +P − = P −P + = 0. (35)

We prove that � fulfils all requirements of the definition of the quasi-Hermitian operator (1)
in subsection 2.3.

2.2. Model of the type (+−)

The domain of definition of the Hamiltonian H2 ≡ H+− reads

Dom(H2) : ψ ∈ AC2(�),

(b1 + ib2)ψ(0+) + (1 − ib3)ψ(0−) = 0,

(b1 + ib2)ψ
′(0+) + (1 + ib3)ψ

′(0−) = 0,
(36)

(b1 + ib2)ψ(l) − (1 + ib3)ψ(−l) = 0,

(b1 + ib2)ψ
′(l) − (1 − ib3)ψ

′(−l) = 0,

b1,2,3 ∈ R, b2
1 + b2

2 − b2
3 = 1,

eigenvalues and eigenfunctions are

En =
(

(2n − 1)π

2l

)2

,

ψn+(x) = Cn

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 + ib3

)
sin

(n − 1)π

2l
x, (37)

ψn−(x) = Cn

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 − ib3

)
cos

(n − 1)π

2l
x, n ∈ N.

Supercharges have exactly the same form as in the previous case (27), however the
supersymmetric structure of this model is different because the zero energy level is absent.

We use analogous procedure to obtain metric operator. We express eigenfunctions of H ∗
2

in terms of en, fn:

e0(x) = 1√
2l

, e2k−1(x) = 1√
l

sin
(2k − 1)π

2l
x, e2k(x) = 1√

l
cos

kπ

l
x,

f2k−1(x) = 1√
l

cos
(2k − 1)π

2l
x, f2k(x) = 1√

l
sin

kπ

l
x,

(38)

where sets {en}∞n=0, {fn}∞n=1 form orthonormal bases of L2(−l, l). Summation (29) in the
strong limit sense yields

� = P +(O1 + O2)P
+ + P −(O1 + O2)P

− − b1 − ib2

1 + ib3
P +O1P

−

−b1 + ib2

1 − ib3
P −O1P

+ − b1 − ib2

1 − ib3
P +O2P

− − b1 + ib2

1 + ib3
P −O2P

+, (39)

7
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where O1,2 are orthogonal projectors:

O1e2k = 0, O1e2k−1 = e2k−1,

O2f2k = 0, O2f2k−1 = f2k−1.
(40)

This result is derived directly from sum (29), nevertheless operators O1 and O2 are projectors,
respectively, on the odd and even parts of the function, i.e.

O1 = 1
2 (I − P), O2 = 1

2 (I + P). (41)

Hence the metric operator � has exactly the same form as in the previous case (34).

2.3. Metric operator

Theorem 2. Operators H1,2 are quasi-Hermitian, the metric operator � reads

� = I − ib3

b1 + ib2
P +P +

ib3

b1 − ib2
P −P, (42)

where b1,2,3 ∈ R, b2
1 + b2

2 − b2
3 = 1,P is a parity and P ± are orthogonal projectors:

(Pψ)(x) = ψ(−x), (P ±ψ)(x) = ϑ(±x)ψ(x), (P ±)2 = P ± = (P ±)∗. (43)

Proof. We prove that � meets all requirements according to definition 1 in several steps:

(1) It is obvious that � is bounded, ‖�‖ � 3.
(2) � is self-adjoint. Relation

�∗ = I − −ib3

b1 − ib2
PP + +

−ib3

b1 + ib2
PP −, (44)

together with PP ± = P ∓P , yields the result.
(3) � is positive:

〈ψ,�ψ〉 = ‖ψ‖2 − ib3

b1 + ib2
J +

ib3

b1 − ib2
J

� ‖ψ‖2 −
∣∣∣∣ ib3

b1 + ib2

∣∣∣∣
∣∣∣∣J

∣∣∣∣
∣∣∣∣1 − b1 + ib2

b1 − ib2

J

J

∣∣∣∣, (45)

where

J =
∫ l

0
ψ(x)ψ(−x) dx, (46)

|J | �
∫ l

0
|ψ(x)||ψ(−x)|dx � 1

2

∫ l

0
|ψ(x)|2 + |ψ(−x)|2 dx

� 1

2

(‖P +ψ‖2 + ‖P −ψ‖2
)

� 1

2
‖ψ‖2. (47)

These estimates yield all together

〈ψ,�ψ〉 �
(

1 − |b3|√
1 + |b3|2

)
︸ ︷︷ ︸

c0

‖ψ‖2 � 0. (48)

(4) � is invertible and �−1 ∈ B(H). Since c0 > 0, inequality (48) yields 0 /∈ σ(�).

8
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(5) � maps the domains of definition of H1,2 and H ∗
1,2 correctly, i.e. � Dom(H1,2) =

Dom(H ∗
1,2). It is straightforward to calculate limits (for ±l analogously)

(�ψ)(0+) = ψ(0+) − ib3

b1 + ib2
ψ(0−),

(�ψ)(0−) = ψ(0−) +
ib3

b1 − ib2
ψ(0+),

(49)

and verify that �ψ satisfies boundary conditions of Dom(H ∗
1,2). �

Proposition 3. Operator � is bounded, positive and �2 = �,

� = a1I + a2P
+P + a2P

−P, (50)

where

a1 > 0, a2
1 = 1

2
(1 +

√
1 − |k|2), a2 = k

2a1
, k = − ib3

b1 + ib2
. (51)

Proof. It is clear that � is bounded:

�2 = (
a2

1 + |a2|2
)
I + 2a1a2P

+P + 2a1a2P
−P, (52)

where we used identities PP ± = P ∓P and P + + P − = I . Slightly modified estimations
(45)–(47) yield

〈ψ, �ψ〉 � (a1 − |a2|)‖ψ‖2, (53)

and a1 − |a2| > 0, whence � is positive. �

2.4. Model with continuous spectrum

A motivation for the quasi-Hermitian model with continuous spectrum is a system on
L2(−l, l),H3 = − d2

dx2 :

Dom(H3) : ψ ∈ AC2(�),

(b1 + ib2)ψ(0+) + (1 − ib3)ψ(0−) = 0,

(b1 + ib2)ψ
′(0+) + (1 + ib3)ψ

′(0−) = 0, (54)

ψ(−l) = ψ(l) = 0,

b1,2,3 ∈ R, b2
1 + b2

2 − b2
3 = 1.

The eigenvalues and eigenfunctions of Hamiltonian read

En =
(nπ

2l

)2
,

ψ2n(x) = C2n−1

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 + ib3

)
sin

nπ

l
x, (55)

ψ2n+1(x) = C2n

(
ϑ(x) − ϑ(−x)

b1 + ib2

1 − ib3

)
cos

(2n + 1)π

2l
x, n ∈ N0.

It is possible to show by using the same procedure as in the (++) and (+−) models that the
strong limit of sum (29) is equal to the � (42) and all the properties of metric operator for H3

are satisfied as well. Since metric operator does not depend on a scale parameter l explicitly,

9
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we may ask if the constructed operator � is a suitable metric for the system on a whole line.
Indeed, we consider L2(R) and H4 = − d2

dx2 :

Dom(H4) : ψ ∈ AC2(R − {0}),
(b1 + ib2)ψ(0+) + (1 − ib3)ψ(0−) = 0,

(56)
(b1 + ib2)ψ

′(0+) + (1 + ib3)ψ
′(0−) = 0,

b1,2,3 ∈ R, b2
1 + b2

2 − b2
3 = 1.

We take the operator � (42) and extend it on L2(R) in a natural way. It is obvious that �

maps correctly the domains (exactly the same proof as before) so that equality

H ∗
4 = �H4�

−1 (57)

holds. The proof of positivity stated in theorem 2 is valid for C∞
0 (R) functions, hence the

positivity of extended � follows immediately from the density of C∞
0 (R) and boundedness of

�. All these facts together show that H4 is quasi-Hermitian operator (definition 1).
The spectrum of H4 is different from the other models, it consists of [0,∞) of continuous

spectrum and at most two eigenvalues which are real negative (theorem 2, [2]). For the
presented model, the solution of H4ψ = Eψ for E < 0 satisfying both boundary conditions
(56) and requirement of being in L2(R) is only a zero function. Therefore, point spectrum of
H4 is empty and σ(H4) = σc(H4) = [0,∞). Although no eigenfunctions are available (hence
we cannot try to find a metric with the help of sum (29)), we showed that H4 is quasi-Hermitian
according to definition 1.

3. Concluding remarks

The requirement of supersymmetry in the system with PT -symmetric points interactions
restricts very strongly the choice of boundary conditions. The Hamiltonians are quasi-
Hermitian and their spectrum is identical with the self-adjoint case. On the other hand,
the simplicity of eigenfunctions allowed us to find a formula for both metric operator and its
square root. Point interaction described by (23) seems to be the most elementary one, they
do not combine the function and derivative. Example [3] shows that already special mixed
boundary conditions lead to the more complicated systems. We remark again that it is possible
to rewrite the boundary conditions in the following way:

ψ(0+) = eiτ1ψ(0−), ψ ′(0+) = eiτ2ψ ′(0−), τ1 �= τ2 (58)

which strongly resemble one particular class of self-adjoint extensions [13]

ψ(0+) = eiτψ(0−), ψ ′(0+) = eiτψ ′(0−). (59)

Possible generalizations of the presented models lie in an increase in the number of
interactions. Supersymmetric structure of the model with n interactions may be very interesting
and simplicity of eigenfunctions allows us probably to find simple form of metric operator.
Another generalization is inserting the boundary conditions to the two-dimensional model,
analogously to [12].
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